常识认为,物体要么表现为粒子形式,要么表现为波的形式,和我们观测的方式无关。但量子力学认为,观察到的物体究竟表现为粒子形式还是波的形式,仅仅取决于该物体到达终点时我们观测的方式。而这也正是这支澳大利亚的研究团队得到的结果。
“我们的实验证明,观测方式决定了一切。在量子水平上,如果你不看着它的话,现实的确是不存在的。”副教授安德鲁·特鲁斯考特(Andrew Truscott)说道。虽然看上去很奇怪,但实验结果确实证明了量子理论的有效性。
量子理论主宰着微观世界,并成为了许多科技得以发展的根基,如LED,激光和电脑芯片等。澳大利亚国立大学的研究者们没有采纳惠勒实验最初的设想,即使用由镜子弹回的光束,而是使用了由激光粉碎的原子。
“将量子物理中对干涉的预测应用到光上似乎有点奇怪,因为光看上去更像波,”博士生罗曼·卡基莫夫(Roman Khakimov)说道,“但原子是一种更加复杂的东西,有自己的质量,还会和电场产生反应等等,如果用原子进行实验的话,就更奇怪了。”
特鲁斯考特教授的研究团队先是捕获了一些氦原子,使其处于悬浮状态,名为玻色-爱因斯坦冷凝物,然后将它们喷射出去,直到只剩下一个氦原子为止。然后让这个氦原子下落,通过两道排成栅栏状的激光束。这有点类似于现实中的栅栏,可以将光线分割开,起到了十字路口的作用。
接着,实验人员会随机放置一道光栅,用来将原子路径重新组合在一起。放置光栅之后,实验人员可以观察到相长干涉或相消干涉,就好像这个原子选择了两条路径一样。
而如果没有放置第二道光栅,实验人员便观察不到任何干涉,就好像原子只走了其中的一条路径。然而,只有当原子通过第一道“十字路口”之后,决定是否放置第二道光栅的随机数才会确定下来。
特鲁斯考特表示,如果你相信原子只选择了其中一条路径,或者相信原子选择了两条路径,那么你就不得不接受这样的说法,即在未来的观测方式会影响到原子过去的状态。“原子并不是直接从A移动到B的。无论原子表现出波的特性还是粒子的特性,只有在终点处进行观测时,它的选择才会变为现实。”